Разновидности термообработки стали и металлов

Обработка металла термическим способом — это изменение внутреннего строения (структуры) металла под воздействием изменения температурных условий и получение вследствие этого необходимых механических и физических свойств металла. Огромная часть термической обработки происходит при критических температурах, при которых происходит структурное превращение в сплавах.

Поэтому термическая обработка металла сводится к трём последовательным операциям и видам:

  • нагрев металла с определённой скоростью до заданной температуры;
  • выдержка металла в течение некоторого времени при этой температуре;
  • охлаждение с заданной по процессу скоростью.

Зависит от того как надо изменить свойства определённого стального изделия и применяют различные виды термической обработки, которые отличаются максимальной температурой нагрева, временем выдержки и скоростью охлаждения. В машиностроении термическая обработка нашла самое широкое применение.

Термическая обработка металла, сплава, стали

Все свойства любого сплава зависят от его структуры. Основной способ, который позволяет изменять эту структуру и является термическая обработка. Её основы разработал Чернов Д.К., а в дальнейшем его работы поддержали Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

Термическая обработка металла и сплава — это последовательность операций таких как: нагрев, выдержка и охлаждение, которые выполняются в определённой последовательности и при определённом режиме, чтобы изменить внутреннее строение сплава и получения нужных свойств, при этом химический состав металла не изменяется.

В чём заключается термическая обработка металла и сплава?

  • В отжиге
  • Закалке
  • Отпуске
  • Нормализации

Отжиг. Это нагрев металла до высокой температуры, а потом происходит медленное охлаждение. Отжиг бывает разного вида — все зависит от температурного режима нагрева и скорости охлаждения.

Закалка. Термообработка стали, сплавов, металла, которая основана на перекристаллизации стали при нагреве выше критической температуры. После выдержки стали при такой температуре следует очень быстрое охлаждение. Такая сталь бывает неравновесной структуры и поэтому после закалки следует — отпуск.

Отпуск. Проводится после закалки, чтобы уменьшить или снять остаточное напряжение в стали и сплавах, повысить вязкость, уменьшить твёрдость и хрупкость металла.

Нормализация. Она похожа на отжиг, различие только в том, что нормализация металла происходит на воздухе, а отжиг — в печи.

Нагрев заготовки

Эта операция очень ответственная. От её правильного проведения зависит, во-первых — качество изделия, а во-вторых — производительность труда. Необходимо знать, что при нагреве металл меняет структуру, свойства и все

характеристики

поверхностного слоя. Так как при взаимодействии стали или сплава с воздухом происходит окисление железа и на поверхности образуется окалина. Толщина окалины зависит от того — какой химический состав металла, какая была температура и время его нагрева.

Сталь начинает интенсивно окисляться при нагреве больше 900 градусов, потом окисляемость увеличивается в два раза — при нагреве 2019 градусов С, а при температуре 2019 градусов С — в 5 раз.

Какое бывает окисление у разных сталей?

Хромоникелевая сталь — её называют жаростойкой потому, что она практически не поддаётся окислению.

Легированная сталь — у неё образуется плотный, но тонкий слой окалины, который защищает от дальнейшего окисления и не даёт растрескиваться при ковке.

Углеродистая сталь — она теряет около 2–4 мм углерода с поверхности при нагреве. Это для металла очень плохо, так как он теряет прочность, твёрдость и сталь ухудшается в закаливании. А особенно очень пагубным является обезуглероживание для ковки небольших деталей с последующей закалкой. Чтобы не было трещин на высоколегированной и высокоуглеродистой стали, их надо нагревать медленно.

Обязательно нужно обращаться к диаграмме «железо-углерод», где определена температура для начала и конца ковки. Делать это надо для того, чтобы металл при нагреве не приобретал крупнозернистую структуру и не снижалась его пластичность.

Но перегрев заготовки можно исправить методом термообработки, но для этого нужно дополнительная энергия и время. Если металл нагреть до ещё большей температуры, то это приведёт к пережогу, что дойдёт до того, что в металле нарушится связь между зёрнами и он полностью разрушится при ковке.

Пережог

Это

самый неисправимый брак

. При нагреве металла или сплава обязательно нужно следить за температурой, временем и конца нагрева. Окалина растёт, если увеличено время нагрева, а при быстром или интенсивном нагреве могут появиться трещины.

Пережог сплава происходит вследствие диффузии кислорода на границах зёрен, где сразу образуются окислы, которые разъединяют зёрна при высокой температуре сплава и при этом сразу резко падает прочность. А пластичность в это время приходит к нулю. Этот брак сразу отправляется на переплавку.

Какой бывает термообработка металла и сплавов

Термическая обработка подразделяется на:

  • термическую;
  • термомеханическую;
  • химикотермическую

В термическую обработку входят основные виды — отжиг 1-го рода, отжиг 2-го рода, закалка и отпуск. Нормализация применяется не ко всем видам стали, все зависит от её степени легированности.

У всех видов термической обработки разная температура нагрева, продолжительность выдержки при этой температуре и скорость охлаждения после окончания выдержки.

1-ый род отжига — это диффузионный отжиг, отжиг для снятия напряжений.

2-ой род отжига подразделяется на неполный, полный, изотермический отжиг, сфероидезацию, нормализацию.

Закалка применяется для того, чтобы изделия были твёрдые, прочные и износостойкие.

Химикотермическая обработка

Это такая термообработка стали, которая совокупляется с насыщением поверхности изделия — углеродом, азотом, алюминием, кремнием, хромом и др., которые образуют с железом твёрдые растворы замещения. Они более длительные и энергоёмкие, чем сталь насыщенная железом и углеродом, образующая с железом твёрдые растворы внедрения.

Химико — термическая обработка при создании на поверхности изделий благоприятных остаточных напряжений сжатия увеличивает долговечность и надёжность изделия. Также она повышает коррозионную стойкость, твёрдость.

Такая обработка предназначена для изменения в определённом слое состава стали. К таким методам относятся:

  • цементация — при таком методе верхний слой стали обогащается углеродом. При этом получаются изделия с комбинированными свойствами — мягкая сердцевина и твёрдый поверхностный слой;
  • азотирование — это обогащение поверхностного слоя азотом, чтобы была повышена коррозионная стойкость и усталостная прочность изделия;
  • борирование — это насыщение поверхностных слоёв стали бором, при таком методе у изделия повышается износостойкость, особенно при трении и сухом скольжении. Кроме того при борировании исключается схватываемость или сваривание деталей в холодном состоянии. Детали после борирования делаются очень стойкими к кислоте и щелочи;
  • алитирование — это насыщение стали алюминием. Делается это для того, чтобы придать стали стойкость к агрессивным газам — серному ангидриду, сероводороду;
  • хромирование — насыщение хромом поверхностного слоя стали. Хромирование малоуглеродистых сталей почти совсем не влияет на их прочностные характеристики. Хромирование стали с более высоким содержанием хрома называется твёрдым хромированием, так как на поверхности деталей образуется карбид хрома, который имеет:
    • высокую твёрдость
    • окалиностойкость
    • коррозионную стойкость
    • повышенную износостойкость

Криогенная обработка

Это упрочняющая термическая обработка металла и сплавов при криогенных, очень низких температурах —

ниже -153 градусов С

. Ранее такая термическая обработка называлась «обработка холодом» или «термическая обработка металла при температуре ниже нуля». Но эти названия не совсем отображали всю суть криогенной обработки.

Её суть заключается в следующем: обрабатываемые детали помещают в криогенный процессор, где происходит их медленное охлаждение, а потом выдерживают детали при температуре -196 градусов С определённое время. Затем они постепенно возвращаются опять к комнатной температуре. Когда идёт этот процесс, то в металле происходят структурные изменения. За счёт этого повышается износостойкость, циклическая прочность, коррозионная и эрозионная стойкости.

Основные свойства, полученные при обработке, как холодное охлаждение, сохраняются на весь срок службы обрабатываемой детали и поэтому не требует повторной обработки.

Конечно, криогенная технология не заменит методы термического упрочнения, а при обработке холодом придаст материалу новые свойства.

Инструменты обработанные сверхнизкими температурами позволяют предприятиям сократить расходы потому, что:

  • увеличивается износостойкость инструмента, деталей и механизмов;
  • снижается количество брака;
  • сокращаются затраты на ремонт и замену технологического оснащения и инструмента.

Именно советские учёные позволили полноценно оценить эффект влияния обработки холодом на металл и сплав и положили начало для использования этого метода.

В данное время метод криогенной обработки изделий широко применяется во всех отраслях промышленности.

Машиностроение и металлообработка:

  • увеличивает ресурс оборудования и инструмента до 300%;
  • увеличивает износостойкость материала;
  • увеличивает циклическую прочность;
  • увеличивает коррозионную и эрозионную стойкость;
  • снимает остаточное напряжение.

Спецтехника и транспорт:

  • увеличивает ресурс тормозных дисков на 250%;
  • повышает эффективность работы тормозной системы;
  • увеличивает циклическую прочность пружин подвески и других упругих элементов на 125%;
  • увеличивает ресурс и мощность двигателя;
  • снижает расходы на эксплуатацию транспортных средств.

Оборонная промышленность:

  • увеличивает живучесть стволов до 200%;
  • уменьшает влияние нагрева стволов на результаты стрельбы;
  • увеличивает ресурс узлов и механизмов.

Добывающая и обрабатывающая промышленность:

  • увеличивает стойкость породоразрушающего инструмента до 200%;
  • уменьшает абразивный износ узлов и механизмов;
  • увеличивает коррозионную и эрозийную стойкость оборудования;
  • увеличивает ресурс промышленного и горнодобывающего оборудования.

Аудиотехника и музыкальные инструменты:

  • уменьшает искажение сигнала в проводниках;
  • улучшает музыкальную деятельность, ясность и прозрачность звучания;
  • расширяет диапазон звучания музыкальных инструментов.

Криогенная обработка применяется практически во всех отраслях, где необходимо повысить ресурс, увеличить прочность и износостойкость, а также поднять производительность.

Для чего нужна термическая обработка?

Надёжность и долговечность металлических конструкций, оборудования, трубопроводов зависит от качества изготовления узлов, деталей, элементов из которых они состоят. Во время эксплуатации они подвергаются статистическим, динамическим и циклическим нагрузкам и влиянию агрессивных сред. Им приходится работать при низких и высоких температурах и находится

в условиях быстрого износа

.

И поэтому эксплуатация любых металлоизделий напрямую зависит от износостойкости, прочности, термо- и коррозионной стойкости элементов из которых они состоят.

Для того чтобы повысить все эти характеристики необходимо правильно подобрать материал для деталей, усовершенствовать их конструкцию, устранить неточности сборки, улучшить методы горячей и холодной обработки.

Таким высоким требованиям редко отвечают материалы в состоянии поставки. Основная часть доставляемых конструкционных элементов нуждается в стабилизации эксплуатационных свойств, чтобы они не изменялись с течением времени. И чтобы повысить механические и физико-химические свойства металлических материалов, применяют термическую обработку. Это последовательность операций нагрева, выдержки и охлаждения металлов и сплавов.

Её проводят для изменения структуры и свойств металлов и сплавов в направлении, которое было задано. Термообработка применяется для изменения структуры фазового состава и перераспределения компонентов, размера и формы кристаллических зёрен, видов дефектов, их количества и распределения. И это все позволяет достаточно легко получить требуемое свойство материала.

Обязательно надо помнить, что свойства металла и сплавов зависит не только от не только от структуры, но и от химического состава, который образуется во время металлургического и литейного процесса.

Задачей термической обработки является ликвидация внутреннего напряжения в металле и сплаве, улучшение механических и эксплуатационных свойств и другое.

Термической обработке подвергается сталь, чугун, сплав на основе цветных металлов.

Нужно знать, что материалам с одним химическим составом при проведении различных режимов термообработки можно получить несколько совершенно разных структур, которые будут обладать абсолютно разными свойствами. При улучшении механических свойств с помощью термической обработки можно использовать сплавы более простого состава. Допускаемые напряжения, уменьшение массы деталей и механизмов, повышение их надёжности и долговечности также можно достичь с помощью термической обработки.

При малых затратах на термообработку результат её может оказывать огромное влияние на трудоёмкость и стоимость работ на смежных участках производства. Многие производители не проводят термическую обработку изделий, тем самым сокращают весь технологический процесс при изготовлении изделий. Иногда это оправдано, а иногда — нет.

Всегда нужно не только тщательно продумывать весь процесс объёмной и местной термообработки, но и строго соблюдать их режимы, чтобы добиться оптимальных структур и высокого уровня физико-механических и эксплуатационных свойств в изделиях для обеспечения их надёжной и длительной работы.

  • Автор: Николай Иванович Матвеев
  • Распечатать

Оцените статью:

(0 голосов, среднее: 0 из 5)

6

Термическая обработка
стали

Классификация видов
термообработки стали. Виды термической
обработки стали (отжиг, отпуск, закалка).

Термическая
обработка (термообработка) стали

процесс изменения структуры стали,
цветных металлов, сплавов при нагревании
и последующем охлаждении с определенной
скоростью.
Термическая
обработка (термообработка) приводит к
существенным изменениям свойств стали,
цветных металлов, сплавов. Химический
состав металла не изменяется.

Виды
термической обработки стали

Отжиг

Отжиг —
термическая обработка (термообработка)
металла, при которой производится
нагревание металла, а затем медленное
охлаждение. Эта термообработка (т. е.
отжиг) бывает разных видов (вид отжига
зависит от температуры нагрева, скорости
охлаждения металла).

Закалка

Закалка —
термическая обработка (термообработка)
стали, сплавов, основанная на
перекристаллизации стали (сплавов) при
нагреве до температуры выше критической;
после достаточной выдержки при критической
температуре для завершения термической
обработки следует быстрое охлаждение.
Закаленная сталь (сплав) имеет неравновесную
структуру, поэтому применим другой вид
термообработки — отпуск.

Отпуск

Отпуск —
термическая обработка (термообработка)
стали, сплавов, проводимая после закалки
для уменьшения или снятия остаточных
напряжений в стали и сплавах, повышающая
вязкость, уменьшающая твердость и
хрупкость металла.

Нормализация

Нормализация —
термическая обработка (термообработка),
схожая с отжигом. Различия этих
термообработок (нормализации и отжига)
состоит в том, что при нормализации
сталь охлаждается на воздухе (при отжиге
— в печи).

Среди
основных видов термической обработки
следует отметить:

  • Отжиг (гомогенизация и нормализация).
    Целью является получение однородной
    зёренной микроструктуры и растворение
    включений. Последующее охлаждение
    является медленным, препятствующим
    образованию неравновесных структур
    типа мартенсита.

  • Закалку проводят
    с повышенной скоростью охлаждения с
    целью получения неравновесных структур
    типа мартенсита. Критическая скорость
    охлаждения, необходимая для закалки
    зависит от материала.

  • Отпуск необходим
    для снятия внутренних напряжений,
    внесённых при закалке. Материал
    становится более пластичным при
    некотором уменьшении прочности.

  • Дисперсионное
    твердение (старение).
    После проведения отжига проводится
    нагрев на более низкую температуру с
    целью выделения частиц упрочняющей
    фазы. Иногда проводится ступенчатое
    старение при нескольких температурах
    с целью выделения нескольких видов
    упрочняющих частиц.

Термическая
обработка металлов
 разделяется
на обработку черных металлов и цветных.
Ниже пойдет речь конкретно об
видах термической
обработке стали
.
Также можете ознакомится с термической
обработкой цветных металлов.

Обжигание —
нагревание стального изделия до
температуры 840—900 °С, выдержка при этой
температуре не меньше 2 ч и охлаждение
вместе с печью. Этот метод применяют
при изготовлении из закаленного изделия
другого или же когда предыдущий закал
был неудачный и инструмент нужно снова
закалить
. Если закаливать необожженные
детали, то в них могут возникнуть трещины,
структура металла станет неоднородной,
что резко ухудшает качество изделия.
Мелкие
детали отжигают, нагревая на массивных
накаленных стальных штабах, с которыми
их охлаждают. Иногда изделие нагревают
ацетиленовой горелкой, которую постепенно
отдаляют от изделия, чтобы изделие
постепенно остыло.

Нормализация –
это нагревание стальных изделий к
соответствующей температуре и охлаждению
на воздухе.

Закаливание –
нагревание углеродных или некоторых
легированных сталей к определенной
температуре и быстрое ее охлаждение. В
результате этого изменяется кристаллическая
структура металла – он становится
твердее и более антикоррозийным.
Мало-углеродные стали с содержимым
углерода до 0,3 % не закаливаются. В
зависимости от марки сталь нагревают
до определенной температуре
. Так, стали
У7, У7А нагревают до 770—790 °С; У8-У13А — до
760—780; Р9-Р18 К5-Ф2 – до 1235—1280 °С
. При
нагревании выше этой температуры сталь
теряет свои свойства «Пережиг» —
непоправимый брак
. Это также касается
отжига и отпускания. В небольших
мастерских или в домашних условиях
температуру определяют за цветом
разжаривания (в затененном месте),
которое приобретает изделие во время
нагревания:

Цвет.
Температура, °С
Темно-коричневый……….
530-580
Коричнево-красный
……..580-650
Темно-красный
……………650-730
Темно-вишневый
…………730-770
Вишнево-красный
………..770-800
Светло-вишневый……….
800-830
Светло-красный …………830-900
Оранжевый
………………..900-1050
Темно-желтый
…………..1050-1150
Светло-желтый
………….1150-1250
Светло-белый …………….1250-1350

Мелкие
изделия, для того чтоб не пережечь, лучше
нагревать на предварительно нагретой
металлической подставке (например,
штабе). Температура нагревания равно
температуре нагревания изделия. Быстрое
охлаждение приводит к твердому закалу,
вследствие чего могут возникнуть большие
внутренние напряжения и даже трещины.
Медленное охлаждение может не дать
нужного по твердости закала Охлаждающими
средами могут быть вода (обычной
температуры или нагретая до температуре
50-50 °С), водные растворы, масло и воздух.
Кухонная соль, едкий натр или селитра,
которые добавляют к охладителям, ускоряют
охлаждение
. Для уменьшения скорости
охлаждения к воде добавляют раствор
мыла, масляную эмульсию, жидкое стекло,
известковое молоко и т.п.
. Чрезмерно
быстрое охлаждение водой часто приводит
к дефектам изделия (внутренние напряжения,
трещины, деформация), а повышение
температуры воды уменьшает ее закальные
свойства
. Поэтому при последовательном
закале нескольких деталей, чтобы они
имели одинаковую закалку, воду часто
заменяют или используют большой
сосуд.
Равномерно и довольно
быстро сталь охлаждается
в 8-12 %-ном водном растворе кухонной соли
или едкого натра при температуре 20 °С.
Некоторые стали для лучшего закала
охлаждают в 30 %-ном растворе едкого
натра. Как охлаждающую среду можно
применять расплавленные соли калиевой
или натриевой селитры
. Нагревание масла
к 60-90 °С не уменьшает скорости охлаждения,
т.е. не влияет на его закаливальные
свойства
. Охлаждающей средой для сталей
может быть воздух (для тонких деталей)
или воздух под давлением (от вентилятора,
компрессора)
. Некоторые плоские детали
(ножи) из нержавеющий стали охлаждают
между двумя металлическими штабами.

Отпускание —
нагревание деталей к определенной
температуре, выдерживанию при этой
температуре и быстрое охлаждение. Его
применяют после охлаждения детали в
процессе закаливания, чтобы уменьшить
хрупкость и частично твердость. Есть
три вида отпускания: низкое, среднее и
высокое соответственно в интервале
температур до 350 °С, 350—500 и 500—680 °С.
Наиболее распространенное низкое
отпускание
. Нагревание до 170 °С только
снимает внутренние напряжения, но не
изменяет твердости стали. Температуру
нагревания при отпускании определяют
специальным термометром, а если его
нет, то за цветами побежалости, т.е.
цветами окислительной пленки, которая
возникает на зачищенной поверхности
изделия во время нагревания:

Цвет.
Температура, °С
Светло-соломенный
……..200
Светло-желтый ……………225
Соломенно-желтый
……..240
Коричнево-желтый
………255
Красно-коричневый
……..265
Пурпурно-красный ………275
Фиолетовый
………………..285
Синий …………………………295
Светло-синий
……………..315
Серый (морская вода) ….330

После
появления желательного цвета в процессе
нагревания, деталь охлаждают. У
легированных сталей цвета побежалости
появляются при температурах на 12-17 °С
ниже от приведенных
. Не имея достаточного
опыта, нагревать закаленные изделия
для отпускания лучше всего на
расплавленном свинце, олове, цинка (для
пружин) или в расплавленной смеси
(поровну) калиевой и натриевой селитры.
Это гарантирует быстрое и равномерное
нагревания и его постоянную температуру.
Можно отпускание соединить с охлаждением.
Для этого нагретый рабочий конец
инструмента погружают во время закаливания
на 20-25 мм в воду и держат, пока металл не
потемнеет
. Потом инструмент вынимают
из воды, быстро очищают от охлажденной
части окалину напильником или куском
шлифовального круга. Как только появится,
нужен цвет побежалости, инструмент
погружают в воду сначала наполовину, а
потом полностью и держат до охлаждения.

Любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени. По такому графику можно определить температуру нагревания, время нагревания и охлаждения, средние и истинные скорости нагревания и охлаждения, время выдержки при температуре нагревания и общую продолжительность производственного цикла.

Но по форме этого графика ничего нельзя сказать о том, с каким видом термообработки мы имеем дело. Вид термообработки определяется не характером изменения температуры во времени, а типом фазовых и структурных изменений в металле.

Основываясь на последнем признаке, А. А. Бочвар разработал классификацию, охватывающую многочисленные разновидности термической обработки черных и цветных металлов и сплавов.

На основе классификации А. А. Бочвара Комиссией по стандартизации Совета Экономической Взаимопомощи были разработаны классификация видов и разновидностей термической обработки сталей и цветных металлов и сплавов, а также соответствующая терминология. На рисунке приведена схема классификации основных видов термической обработки металлов и сплавов.

Схема классификации основных видов термической обработки металлов и сплавов

Термическая обработка подразделяется на собственно термическую, химико-термическую и термомеханическую (или деформационно-термическую).

Собственно термическая обработка заключается только в термическом воздействии на металл или сплав, химико-термическая — в сочетании термического и химического воздействия, термомеханическая — в сочетании термического воздействия и пластической деформации.

Собственно термическая обработка включает следующие основные виды: отжиг 1-го рода, отжиг 2-го рода, закалку с полиморфным превращением, закалку без полиморфного превращений, отпуск и старение. Эти виды термической обработки относятся и к сталям, и к цветным металлам и сплавам.

Каждый из видов собственно термообработки подразделяется на разновидности, специфические для сплавов на разных основах. Химико-термическая и термомеханическая обработки имеют разновидности, рассматриваемые в соответствующих главах.

«Теория термической обработки металлов»,
И.И.Новиков

Искусство термообработки режущего и колющего оружия было высоко развито в средние века. Например, знаменитые клинки из булатной (дамасской) стали обладали прекрасными режущими и упругими свойствами благодаря сочетанию тонко разработанных способов плавки, ковки и термообработки. Не зная сущности внутренних превращений в металле, средневековые мастера приписывали получение высоких свойств при термообработке проявлению сверхъестественных сил. Способы термообработки стали,…

В 2019 г. на Обуховский сталелитейный завод в Петербурге был приглашен на должность техника молотового цеха Дмитрий Константинович Чернов (1839 — 2019 гг.). В 2019 г. в Русском техническом обществе Чернов делает знаменитый доклад «Критический обзор статей гг. Лаврова и Калакуцкого о стали и стальных орудиях и собственные Д. К. Чернова исследования по этому же…

Выдающийся последователь Д. К. Чернова французский инженер Флорис Осмонд (1849 — 2019 гг.) применил в 2019 г. термопару Ле-Шаггелье для определения критических точек стали при термическом анализе. Работы Осмонда, подтвердившего и развившего выводы Чернова, привлекли внимание многих металлургов и химиков к проблеме структурных превращений в металлах и послужили дополнительным толчком для широких экспериментальных исследований в…

В 2019 г. немецкий инженер А. Вильм (1869 — 2019 гг.) на изобретенном им дуралюмине открыл старение после закалки — один из основных способов упрочнения сплавов. В 2019 г. американский металловед П. Мерика (1889 — 2019 гг.) вскрыл природу старения дуралюминов, связав упрочнение при старении с образованием дисперсных выделений в пересыщенном твердом растворе. Это было…

С отдельными видами термообработки приходится сталкиваться как с побочными процессами при горячей обработке давлением, литье, сварке и других технологических операциях. Например, частичная или полная закалка встречается при ускоренном охлаждении отливок после их затвердевания. При шлифовании деталей из-за разогрева поверхности может произойти отпуск. При сварке в зоне термического влияния сварного шва можно наблюдать рекристаллизационный отжиг и…

Термообработка сплавов является неотъемлемой частью производственного процесса чёрной и цветной металлургии. В результате такой процедуры металлы способны изменить свои характеристики до необходимых значений. В данной статье мы рассмотрим основные виды термообработки, применяемые в современной промышленности.

Сущность термической обработки

В процессе производства полуфабрикаты, металлические детали подвергаются термической обработке для придания им нужных свойств (прочности, устойчивость к коррозии и износу и т. д.). Термическая обработка сплавов – это совокупность искусственно созданных процессов, в ходе которых в сплавах под действием высоких температур происходят структурные и физико-механические изменения, но сохраняется химический состав вещества.

Назначение термообработки

Металлические изделия, которые используются ежедневно в любых отраслях народного хозяйства, должны отвечать высоким требованиям устойчивости к износу. Металл, как сырьё, нуждается в усилении нужных эксплуатационных свойств, которых можно добиться воздействием на него высокими температурами. Термическая обработка сплавов высокими температурами изменяет изначальную структуру вещества, перераспределяет составляющие его компоненты, преобразует размер и форму кристаллов. Всё это приводит к минимизации внутреннего напряжения металла и таким образом повышает его физико-механические свойства.

Виды термической обработки

Термообработка металлических сплавов сводится к трём незатейливым процессам: нагреву сырья (полуфабриката) до нужной температуры, выдерживанию его в заданных условиях необходимое время и быстрому охлаждению. В современном производстве используется несколько видов термообработки, отличающихся между собой некоторыми технологическими особенностями, но алгоритм процесса в общем везде остаётся одинаковым.

По способу совершения термическая обработка бывает следующих видов:

  • Термическая (закалка, отпуск, отжиг, старение, криогенная обработка).
  • Термо-механическая включает обработку высокими температурами в сочетании с механическим воздействием на сплав.
  • Химико-термическая подразумевает термическую обработку металла с последующим обогащением поверхности изделия химическими элементами (углеродом, азотом, хромом и др.).

Отжиг

Отжиг – производственный процесс, при котором металлы и сплавы подвергаются нагреванию до заданного значения температуры, а затем вместе с печью, в которой происходила процедура, очень медленно естественным путём остывают. В результате отжига удаётся устранить неоднородности химического состава вещества, снять внутренне напряжение, добиться зернистой структуры и улучшить её как таковую, а также снизить твёрдость сплава для облегчения его дальнейшей переработки. Различают два вида отжига: отжиг первого и второго рода.

Отжиг первого рода подразумевает термическую обработку, в результате которой изменения фазового состояния сплава незначительны или отсутствуют вовсе. У него также есть свои разновидности: гомогенизированный – температура отжига составляет 1100-1200 , в таких условиях сплавы выдерживают в течение 8-15 часов, рекристаллизационный (при t 100-200 ) отжиг применяется для клёпаной стали, то есть деформированной уже будучи холодной.

Отжиг второго рода приводит к значимым фазовым изменениям сплава. Он также имеет несколько разновидностей:

  • Полный отжиг – нагрев сплава на 30-50 выше критической температурной отметки, характерной для данного вещества и охлаждения с указанной скоростью (200 /час – углеродистые стали, 100 /час и 50 /час – низколегированные и высоколегированные стали соответственно).
  • Неполный – нагрев до критической точки и медленное охлаждение.
  • Диффузионный – температура отжига 1100-1200.
  • Изотермический – нагрев происходит так же, как при полном отжиге, однако после этого проводят быстрое охлаждение до температуры несколько ниже критической и оставляют остывать на воздухе.
  • Нормализованный – полный отжиг с последующим остыванием металла на воздухе, а не в печи.

Закалка

Закалка – это манипуляция со сплавом, целью которой является достижение мартенситного превращения металл, обеспечивающее понижение пластичности изделия и повышение его прочности. Закалка, равно как и отжиг, предполагает нагрев металла в печи выше критической температуры до температуры закалки, отличие состоит в большей скорости охлаждения, которое происходит в ванне с жидкостью. В зависимости от металла и даже его формы применяют разные виды закалки:

  • Закалка в одной среде, то есть в одной ванне с жидкостью (вода – для крупных деталей, масло – для мелких деталей).
  • Прерывистая закалка – охлаждение проходит два последовательных этапа: сперва в жидкости (более резком охладителе) до температуры приблизительно 300 , затем на воздухе либо в другой ванне с маслом.
  • Ступенчатая – по достижению изделием температуры закалки, его охлаждают какое-то время в расплавленных солях с последующим охлаждением на воздухе.
  • Изотермическая – по технологии очень похожа на ступенчатую закалку, отличается только временем выдержки изделия при температуре мартенситного превращения.
  • Закалка с самоотпуском отличается от других видов тем, что нагретый метал охлаждают не полностью, оставив в середине детали тёплый участок. В результате такой манипуляции изделие приобретает свойства повышенной прочности на поверхности и высокой вязкости в середине. Такое сочетание крайне необходимо для ударных инструментов (молотки, зубила и др.)

Отпуск

Отпуск – это завершающий этап термической обработки сплавов, определяющий конечную структуру металла. Основная цель отпуска является снижение хрупкости металлического изделия. Принцип заключается в нагреве детали до температуры ниже критической и охлаждении. Поскольку режимы термической обработки и скорость охлаждения металлических изделий различного назначения могут отличаться, то выделяют три вида отпуска:

  • Высокий — температура нагрева от 350-600 до значения ниже критической. Данная процедура чаще всего используется для металлических конструкций.
  • Средний – термообработка при t 350-500, распространена для пружинных изделий и рессор.
  • Низкий — температура нагрева изделия не выше 250 позволяет достичь высокой прочности и износостойкости деталей.

Старение

Старение – это термическая обработка сплавов, обуславливающая процессы распада пересыщенного металла после закалки. Результатом старения является увеличение пределов твёрдости, текучести и прочности готового изделия. Старению подвергаются не только чугун, но и цветные металлы, в том числе и легко деформируемые алюминиевые сплавы. Если металлическое изделие, подвергнутое закалке выдержать при нормальной температуре, в нём происходят процессы, приводящие к самопроизвольному увеличению прочности и уменьшению пластичности. Это называется естественное старение металла. Если эту же манипуляцию проделать в условиях повышенной температуры, она будет называться искусственным старением.

Криогенная обработка

Изменения структуры сплавов, а значит, и их свойств можно добиться не только высокими, но и крайне низкими температурами. Термическая обработка сплавов при t ниже нуля получила название криогенной. Данная технология широко используется в самых разных отраслях народного хозяйства в качестве дополнения к термообработкам с высокими температурами, поскольку позволяет существенно снизить расходы на процессы термического упрочнение изделий.

Криогенная обработка сплавов проводится при t -196 в специальном криогенном процессоре. Данная технология позволяет существенно увеличить срок службы обработанной детали и антикоррозионные свойства, а также исключить необходимость повторных обработок.

Термомеханическая обработка

Новый метод обработки сплавов сочетает в себе обработку металлов при высоких температурах с механической деформацией изделий, находящихся в пластичном состоянии. Термомеханическая обработка (ТМО) по способу совершения может быть трёх видов:

  • Низкотемпературная ТМО состоит из двух этапов: пластической деформации с последующим закалкой и отпуском детали. Главное отличие от других видов ТМО – температура нагрева до аустенитного состояния сплава.
  • Высокотемпературная ТМО подразумевает нагрев сплава до мартенситного состояния в сочетании с пластической деформацией.
  • Предварительная – деформация производится при t 20 с последующей закалкой и отпуском металла.

Химико-термическая обработка

Изменить структуру и свойства сплавов возможно и с помощью химико-термической обработки, которая сочетает в себе термическое и химическое воздействие на металлы. Конечной целью данной процедуры помимо придания повышенной прочности, твёрдости, износостойкости изделия является и придание детали кислотоустойчивости и огнестойкости. К данной группе относятся следующие виды термообработки:

  • Цементация проводится для придания поверхности изделия дополнительной прочности. Суть процедуры заключается в насыщении металла углеродом. Цементация может быть выполнена двумя способами: твёрдая и газовая цементация. В первом случае обрабатываемый материал вместе с углём и его активатором помещают в печь и нагревают до определённой температуры с последующей выдержкой его в данной среде и охлаждением. В случае с газовой цементацией изделие нагревается в печи до 900 под непрерывной струёй углеродосодержащего газа.
  • Азотирование – это химико-термическая обработка металлических изделий путём насыщения их поверхности в азотных средах. Результатом данной процедуры становится повышение предела прочности детали и увеличение его коррозионной устойчивости.
  • Цианирование – насыщение металла одновременно и азотом и углеродом. Среда может быть жидкой (расплавленные углерод- и азотсодержащие соли) и газообразной.
  • Диффузионная металлизация представляет собой современный метод придания металлическим изделиям жаростойкости, кислотоустойчивости и износостойкости. Поверхность таких сплавов насыщают различными металлами (алюминий, хром) и металлоидами (кремний, бор).

Особенности термической обработки чугуна

Литейные сплавы чугуна повергаются термической обработке по несколько иной технологии, чем сплавы цветных металлов. Чугун (серый, высокопрочный, легированный) проходит следующие виды термообработки: отжиг (при t 500-650 ­), нормализация, закалка (непрерывная, изотермическая, поверхностная), отпуск, азотирование (серые чугуны), алитирование (перлитные чугуны), хромирование. Все эти процедуры в результате значительно улучшают свойства конечных изделий чугуна: увеличивают эксплуатационный срок, исключают вероятность возникновения трещин при использовании изделия, повышают прочность и жаростойкость чугуна.

Термообработка цветных сплавов

Цветные металлы и сплавы обладают отличными друг от друга свойствами, поэтому обрабатываются разными методами. Так, медные сплавы для выравнивания химического состава подвергаются рекристаллизационному отжигу. Для латуни предусмотрена технология низкотемпературного отжига (200-300 ), поскольку этот сплав склонен при влажной среде к самопроизвольному растрескиванию. Бронза подвергается гомогенизации и отжигу при t до 550 . Магний отжигают, закаляют и подвергают искусственному старению (естественное старение для закалённого магния не происходит). Алюминий, равно как и магний, подвергается трём методам термообработки: отжигу, закалке и старению, после которых деформируемые алюминиевые сплавы значительно повышают свою прочность. Обработка титановых сплавов включает: рекристаллизационный отжиг, закалку, старение, азотирование и цементацию.

Резюме

Термическая обработка металлов и сплавов является основным технологическим процессом, как в чёрной, так и в цветной металлургии. Современные технологии располагают множеством методов термообработки, позволяющих добиться нужных свойств каждого вида обрабатываемых сплавов. Для каждого металла свойственна своя критическая температура, а это значит, что термообработка должна производиться с учётом структурных и физико-химических особенностей вещества. В конечном итоге это позволит не только достичь нужных результатов, но и в значительной степени рационализировать производственные процессы.