Raspberry Pi (Распберри Пи): назначение и применение

Умный дом, построенный на базе Raspberry Pi 3 — многофункциональный комплекс, позволяющий контролировать и управлять всеми элементами вашего песта проживания, будь то квартира, дача или частный дом. Под его «руководством» работают многие элементы, начиная от лампочек в помещениях, заканчивая системой отопления и запуском систем, распознающих присутствие человека.

Особенность системы заключается в слаженной работе всех компонентов, надежности и сравнительной легкости настройки.

Каков принцип работы умного дома? Какие характеристики и возможности актуальны? Что учесть при настройке и подготовке к работе? Как собрать систему умный дом на базе Raspberry Pi 3? Эти и другие вопросы рассмотрим ниже.

Принцип работы

Умный дом на базе Raspberry Pi 3 популярен, благодаря легкости сборки, в том числе для людей без специального опыта. Основой всей системы является небольшая материнская плата, в которую производитель заложил огромный потенциал.

Первоначально компания продавала две комплектации прибора — модели А и В. Первая отличалась объем памяти размером в 256 МБ, а вторая в два раза большим ее размером.

Модель А какое-то время была в продаже, благодаря наличию доступа к глобальной сети, но после обновления до версии «В» в первом варианте отпала необходимость. Новая версия отличалась компактностью и наличием четырех портов USB.

Построение умного дома на основе Raspberry Pi 3 зависит от предпочтений владельца. Вне зависимости от этого, принцип работы остается неизменным:

  1. Главную функцию выполняет сервер. Это центральное устройство, собирающее информацию и производящее необходимые вычисления. Роль главного сервера играет материнская плата Raspberry Pi, на которую инсталлируется WEB-интерфейс. Его особенность заключается в возможности связи с планшетом, ноутбуком или телефоном.
  2. Сервер находится во взаимосвязи с окружающими его модулями. Контакт осуществляется с помощью RS-485. Для обеспечения слаженного функционирования системы в каждой комнате устанавливается специальный контроллер. Его задача заключается в приеме и анализе поступающей информации с последующей отправкой команд на исполняющие устройства (изделия бытовой техники).
  3. Связь модуля Raspberry Pi с контроллерами обеспечивается с помощью UART-порта. К последнему подключается специальный проводник на интерфейс RS-485. Стоит учесть, что в последних моделях устройства уже предусмотрен такой интерфейс (он идет уже в базе).
  4. В роли операционной системы выступает Raspberry. В комплексе с ней работает одно из доступных расширений, к примеру, Pimatic.

При желании система умный дом может быть собрана на платформе «открытого» типа, к примеру, Fhem, openHAB, SHC. Не менее востребованный вариант — применение платформы wiBulter.

Где применяется Raspberry Pi 3 Model B

Сфера применения умного дома на базе Raspberry Pi ограничивается только познаниями установщика и пожеланиями владельца дома. Здесь возможны следующие варианты:

  1. Применение в качестве полного компьютера. При желании к системе можно подключить дисплей и клавиатуру, подсоединить мышку, а после пользоваться полученным ПК на Windows Последнее возможно только для Raspberry Pi B, а также моделей 2B или 3B.
  2. Сбор множества небольших компьютеров Raspberry Pi для получения ПК с большим числом ядер и высокой производительностью. Для этого требуется соединить в один сервер требуемое число изделий и найти удобное место для размещения. Также придется решить вопрос с охлаждением конструкции. Готовый компьютер по производительности не уступит даже наиболее мощному CPU, приобретенному за несколько сотен долларов.
  3. Инсталляция на Raspberry эмулятора консоли, скачивание игровых образов, подключение монитора и джойстика. Этого достаточно для превращения системы в игровую платформу для развлечений.
  4. Подключение сенсорного дисплея диагональю 8-15 дюймов, создание деревянного или металлического корпуса и установка ОС Android. В результате получается многофункциональный планшет, сделанный своими силами.
  5. Создание собственной осветительной системы для улицы или дома посредством настройки умного дома Raspberry Pi. При желании будут загораться только определенные лампочки, что позволяет удивить любимых и близких людей.
  6. Обустройство настенного органайзера. Все, что требуется — подключить уменьшенную версию ПК к дисплею, настроить ОС и закрепить конструкцию на стене.

Возможности умного дома на Raspberry Pi позволяют использовать конструкцию в качестве приставки, домашней метеостанции, охранной системы или планшета. Возможности применения почти не ограничены.

Особенности и характеристики Raspberry Pi 3 Model B

Устройство представляет собой компактный компьютер, имеющий размеры пластиковой карты банка. На чипе установлено необходимое оборудование для работы — CPU, «оперативка», HDMI-разъем, USB и композитный выход. Также имеется Ethernet-разъем, беспроводная связь и блютуз.

В блоке Raspberry Pi 3 Model B предусмотрено четыре десятка вводных и выводных контактов базового назначения. Они предназначены для подключения периферийных устройств, нуждающихся во взаимодействии с остальными элементами внешнего мира. Речь идет о коммутации с сенсорами и исполнительными изделиями, работающими от сети.

Базовая ОС для умного дома на Raspberry Pi 3 — Linux. Операционная система инсталлируется на карту памяти типа microSD, которая устанавливаемся в специальном разъеме платы.

Многие ранее работали только с Windows и бояться Linux. В этой ОС нет ничего необычного. Она проста в пользовании и отличается высоким уровнем безопасности. Если при установке допущены ошибки в настройке, их легко исправить путем восстановления образа.

Версия Raspberry Pi 3 Model — более продвинутый вариант второй модели. Новая плата отличается полной совместимостью с прошлой версией, но отличается большей производительностью и дополнительными средствами для подключения:

  1. Появилась беспроводная связь Wi-Fi серии 802.11n и блютуз 4.1.
  2. Предусмотрен процессор с четырьмя ядрами (тип — ARM Cortex-A53). Частота работы составляет 1,2 гигагерца. В основе лежит однокристальный чип типа Broadcom BCM

В CPU предусмотрена архитектура ARM v53. Это позволяет использовать любую операционную систему, к примеру, Ubuntu или Windows 10.

Применение 4-ядервного чипа гарантирует рост мощности изделия на 50-60 процентов (если сравнивать со второй модель) и на 2019 процентов в сравнении с первым Raspberry Pi.

Благодаря этой особенности, мини ПК открывает еще больше возможностей по созданию сложных проектов умного дома, что на фоне доступа к Сети открывает почти безграничные перспективы.

Новая модель Raspberry Pi 3 наделена «оперативкой» на 1 ГБ. Часть этой памяти применяется графической подсистемой. Что касается графической части, здесь установлен 2-ядерный CPU VideoCore IV.

Система поддерживает разные стандарты типа OpenGL ES 2.0, VC-1, OpenVG, MPEG-2. Дополнительные возможности — способность кодировать, раскодировать и выводить полноэкранное видео формата HD на экран. Параметры видео — 1080p, 60 FPS, H.264.

Периферия

Неизменный плюс системы заключается в возможности подключения ТВ или дисплея с помощью HDMI-выхода. Разрешение можно менять в диапазоне от 640*350 до 1920*1200. Выход композитного типа имеет два режима работы — NTSC и PAL. Для коммутации колонок и наушников предусмотрено 3,5-миллиметровое гнездо.

Дополнительные плюсы умного дома на базе Raspberry Pi 3 — порты USB, соединенные внутренним хабом. При необходимости можно подключить мышь и клавиатуру.

На устройстве предусмотрена возможность экономии ресурсов ЦП. Для этого на Raspberry Pi 3 модели имеются 15-пнинковые разъемы. Среди них — CSI-2, используемый для подключения камеры, и DSI для коммутации экрана.

Имеется ряд интерфейсов низкого уровня, а именно питающие пины (3 и 5 Вольт, а также «земля), 40 портов для общего ввода и вывода, SPI с возможностью выбора, серийный UART и I2C/TWI.

Для подключения к умному дому на базе Raspberry Pi 3 модели B предусмотрен блютуз 4.1, Wi-Fi 802.1 n и Ethernet (10/100 Мбит). В последнем случае выход обустроен на обычном разъеме типа RJ-45.

Питающая часть и размеры

На изделие подается напряжение 5 В, поступающее от специального адаптера через питающие пины или microUSB-разъем. Для надежности лучше применять источник, имеющий I от 2-х ампер и более. В этом случае появляется возможность для подключения к портам USB более мощных изделий.

Аппаратного выключателя, обеспечивающего подачу напряжения, на плате нет. Активация мини ПК происходит посредством включения шнура в розетку, а для отключения используются базовые функции ОС.

Размеры платы всего 8,5*5,4 см. В ней помещаются необходимые порты, часть из которых слегка выступает за общие габариты (на несколько миллиметров).

ПО

В умном доме на базе Raspberry Pi 3 Model B отсутствует привычный жесткий диск, поэтому «операционка» устанавливается на выносном носителе (карте памяти). Ее необходимо заранее подготовить и поставить.

При наличии нескольких карт памяти можно использовать разные образы для системы умного дома. Стоит учесть, что карта памяти в комплектацию не идет, поэтому ее придется докупать самостоятельно. Желательно брать microSD с емкостью от 4 ГБ и более.

Базовые параметры:

  • CPU: 64 бита 4 ядра. Тип — ARM Cortex-A53. Частота — 1,2 ГГц. Чип однокристаллический BCM2837;
  • Оперативка — один гигабайт LPDDR2 SDRAM;
  • цифровой HDMI-выход на видео;
  • аудио-выход на 3,5 мм (4 pin);
  • порты USB типа 2.0×4;
  • сетевое обеспечение — Wi-Fi11n, 10/100 мегабайт RJ45 Ethernet;
  • для подключения дисплея — Display Serial Interface (DSI);
  • блютуз — Bluetooth 4.1, Low Energy;
  • для подключения видеокамеры — MIPI Camera Serial Interface (CSI-2);
  • слот для MicroUSD;
  • 40 портов ввода-вывода;
  • размеры — 8,6*5,6*1,7 см.

Преимущества Raspberry Pi 3 Model B

Умный дом на базе Raspberry Pi 3 Model B имеет ряд неоспоримых плюсов:

  1. Наличие большого выбора интерфейсов, позволяющих максимально расширить возможности системы. Здесь предусмотрен блютуз, имеется Wi-Fi, порты HDMI и USB.
  2. Возможность подключения модема GSM для выхода на связь с оператором, предоставляющим услуги глобальной сети.
  3. Наличие мощного процессора с четырьмя ядрами на 1,2 ГГц, способного решать серьезные задачи.
  4. Полная совместимость новой и предыдущей версии.
  5. Компактность. Устройство имеет небольшие размеры, а весит всего 45 грамм.
  6. Доступность разгона. При желании доступно увеличение производительности системы.
  7. Легкость применения. Программирование Raspberry Pi 3 Model B можно осуществлять на разных языках.

Также стоит выделить ряд преимуществ умного дома, построенного на базе Raspberry Pi 3 Model B:

  1. Возможность обезопасить здание путем защиты от потопа, установки видеонаблюдения, создания противопожарной и охранной систем.
  2. Установка систем, повышающих комфорт. Речь идет об электрических приборах, а также специальных устройствах, управляющих шторками.
  3. Возможность инсталляции системы, обеспечивающей дополнительную экономию. Применяются сенсорные смесители, датчики движения, а также датчики, фиксирующие перемещение человека или животных.
  4. Доступность инсталляции развлекательных специальных систем. К примеру, к умному дому на Raspberry Pi 3 Model B можно подключить мультирум или домашний кинотеатр.

Для полноты картины стоит учитывать и ряд минусов, характерных для умного дома на Raspberry Pi 3 Model B:

  1. Монтаж таких устройств подойдет для крупных особняков, расположенных вне черты города и имеющих большую площадь.
  2. Для установки нужно знать особенности и правила применения каждого из элементов. В крайнем случае, под рукой желательно иметь квалифицированного специалиста, готового в любой момент помочь в интересующем вопросе.
  3. Со временем умный дом, построенный на Raspberry Pi 3 Model B, устареет. По этой причине возможны трудности с поиском необходимых компонентов (в случае поломки).

В целом, устройство имеет больше положительных качеств, поэтому заслуживает внимание людей, желающих обустроить комфортный и удобный в эксплуатации дом.

Модули, которые можно использовать

Для расширения функциональности умного дома на Raspberry Pi 3 Model B можно использовать дополнительные модули. Их применение расширяет число доступных опций и позволяет создать уникальную систему, обеспечивающую максимальное удобство:

  1. ВИДЕОКАМЕРА. Подключение этого модуля позволяет дополнить умный дом системой видеонаблюдения. Камера совмещается с операционной системой небольшого ПК Raspberry Pi 3 Model B. После установки устройства можно фиксировать видео в разрешении Full HD и делать фотографии с разрешением в 5 МП.
  2. ДАТЧИКИ ДЫМА И ВОДЫ. Установка этих модулей позволяет защитить имущество от пожара и протечки соответственно. Для владельцев больших домов это полезная опция, позволяющая избежать неприятностей. В случае задымления или потопа система оперативно информирует владельца о наличии проблем.
  3. ИЗМЕРИТЕЛЬ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ ВОЗДУХА. С помощью таких модулей можно превратить умный дом на базе Raspberry Pi 3 Model B в метеостанцию с подробными сведениями о ситуации за окном и внутри помещения.
  4. ДАТЧИК ДВИЖЕНИЯ. Подключение устройства позволяет автоматически включать и отключать свет в помещениях. Датчик движения полезен на улице, в гараже, в коридоре и других нежилых помещениях.
  5. МОДУЛЬ БЕСПРОВОДНОЙ СВЯЗИ. Для объединения внешних устройств и контроллера можно использовать приемник и передатчик, работающие на частоте 433 Гц. При наличии средств можно купить более прогрессивный вариант устройства — Z-Wave Fibaro Home Center

Применение указанных датчиков расширяет возможности умного дома и повышает уровень его защиты.

Первые настройки и подготовка к работе

Для начала стоит ознакомиться с инструкцией и рекомендацией производителя относительно применения устройства. Стоит убедиться в наличии необходимых датчиков и спланировать их подключение. Плата установлена в специальной коробке, защищающей изделие от механических воздействий. Устройство не люфтит и выглядит весьма солидно.

После снятия верхней крышки можно получить доступ к плате. Единственная трудность заключается в подключении бокового разъема. Для удобства рекомендуется покупать угловой шлейф.

Дополнительно покупается два радиатора, предназначенные для охлаждения контроллера Ethernet и основного чипа.

Есть и другие решения.

Для первого пуска потребуется карта памяти, с установленной на нее операционной системой. Минимальный размер флешки должен быть от 4 Гб и более. Образ ОС доступен в Интернете (ссылка на скачивание ниже). Также потребуется программа Win32 Disc Imager.

После скачивания образа на ноутбук его необходимо распаковать из архива, после чего вставить карту памяти в кардридер. Далее запускается уже установленная программа Win32 Disc Imager.

Как только работа завершена, с помощью программы выбирается образ и записывается на флеш-накопитель.

Далее достается карту памяти с образом и вставляется в устройство Raspberry Pi 3 Model B. После этого подключается клавиатура, дисплей и мышка. При желании можно использовать беспроводную клавиатуру.

Сборка системы умный дом

Во избежание проблем приведем подробную инструкцию по сборке системы и подготовки ее к работе. Алгоритм действий имеет следующий вид:

  1. Вход на официальный сайт устройства Raspberry Pi 3 Model B и скачивание требуемой версии ОС.
  2. Установка карты в разъем материнской платы для установки ОС.

На этом настройка Raspberry Pi 3 Model B завершена.

  1. Инсталляция Node JS. Прохождение этого этапа потребуется для полноценной работы NodeMCU ESP-12E.
  2. Установка Homebridge и настройка автоматического пуска с Root-правами (устройство должно запускаться после включения Raspberry Pi 3 Model B).
  3. Подключение внешних модулей по специальной схеме.

После завершения указанных работ необходимо зайти в мобильный телефон и открыть приложение Home. После этого стоит добавить платформу Raspberry Pi.

По завершении процесса авторизации пользователю доступно управление разными устройствами в квартире или доме.

Владелец управляет освещением, знает точную информацию о влажности и температуре, получает сведения о наличии протечки или задымлении (при появлении таких проблем).

Это лишь часть возможностей умного дома на Raspberry Pi 3 Model B, которые получает владелец.

Перейдя посылке можно ознакомиться с полной инструкцией по установки Raspberry Pi 3 Model B.

Что может получиться смотрите на видео.

Итоги

Умный дом на базе Raspberry Pi 3 Model B — удобная альтернатива уже существующих и более дорогостоящих устройств. Особенность платформы заключается в компактности, возможности расширения функционала и небольшой цене. К ней можно подключить разные внешние модули, не переживая о проблемах с совместимостью.

Для успешного подключения и установки рекомендуется знание принципов работы с командной строкой. Для этого требуется подготовить систему к работе, найти необходимые материалы в Сети и выполнить настройку.

Несмотря на временные затраты, результатом труда является мощная и удобная система, обеспечивающая полную автоматизацию дома. В дальнейшем к ней можно подключить мультимедийные и иные устройства.

В уже довольно не новом посте, посвященном Raspberry Pi, это устройство рассматривалось исключительно, как маленький и очень дешевый компьютер. Бесспорно, Raspberry Pi им и является. Но, помимо этого, у Raspberry Pi есть еще и 26 пинов GPIO (General Purpose Input Output), что очень кстати в свете моего недавнего увлечения электроникой. Почему? Давайте разберемся.

Отмечу, что все написанное ниже справедливо для Raspberry Pi 2 Model B. Если у вас другая малина, то расположение пинов и другие детали могут отличаться. Поэтому обязательно сверьтесь с официальной документацией. В качестве операционной системы я использовал релиз Raspbian от 2016-09-28, который можно скачать здесь. Более поздние релизы мне не нравятся, потому что из соображений безопасности в них решили по умолчанию отключать SSH. Что довольно смешно, потому что в этот же релиз решили включать Adobe Flash.

Итак, расположение пинов описано на официальном сайте:

На этой картинке явно изображен один из углов устройства (слева вверху), поэтому по ошибке пронумеровать пины вверх ногами довольно сложно. Очень интересно, что курили ребята, решившие так нумеровать пины. Если кто-нибудь знает ответ, расскажите, пожалуйста, в комментариях. Чтобы окончательно всех запутать, они решили сделать две нумерации. Выше представлена «логическая» нумерация. Под этими номерами пины видны операционной системе. Есть еще и «физическая» нумерация, про которую можно прочитать по приведенной выше ссылке. В рамках данной заметки используется исключительно «логическая» нумерация, изображенная на картинке.

Допустим, мы хотим программно управлять напряжением, подаваемым на 2-й пин. Проще всего это сделать через sysfs.

Первым делом «экспортируем» пин, без этого шага им не получится управлять:

echo 2 > /sys/class/gpio/export

Делаем его out-пином, то есть, он будет либо подавать, либо не подавать напряжение в 3.3 вольта:

echo out > /sys/class/gpio/gpio2/direction

Подаем напряжение:

echo 1 > /sys/class/gpio/gpio2/value

Перестаем подавать напряжение:

echo 0 > /sys/class/gpio/gpio2/value

Узнаем, подается ли сейчас напряжение:

cat /sys/class/gpio/gpio2/value

По завершении работы пину можно сделать unexport:

echo 2 > /sys/class/gpio/unexport

Есть мнение, и не только мое, что 3.3 вольта — как-то маловато. Кроме того, было бы неплохо не только включать и выключать напряжение, но и изменять его в некотором диапазоне. Увы, насколько мне известно, ничего этого Raspberry Pi не умеет. Поговаривают, что умеет Arduino, но опыта использования этого устройства на момент написания этих строк у меня нет.

Можете подключить пин к цепи из светодиода и резистора с сопротивлением 470 Ом и проверить, что описанным выше образом светодиод можно включать и выключать. Для земли (то есть, минуса) можно использовать любой пин, изображенный на приведенной выше схеме черным цветом. Понятно, что работу с sysfs можно автоматизировать на любом языке программирования по вкусу. Можно подключить сразу три светодиода разного цвета и получить программно управляемый светофор. Собственно, это я и сделал, воспользовавшись пинами 3 и 4.

Важно! После загрузки Raspberry Pi некоторые пины по дэфолту могут подавать напряжение. Возможно, это не то, чего вы хотите для вашей цепи. У меня по дэфолту ток был на пинах 2, 3 и 14. Я бы советовал перепроверить эту информацию на вашей конкретной Raspberry Pi и конкретной версии Raspbian. Имейте также в виду, что написанная вами же программа может оставить пины в неизвестном состоянии (например, если вы прибьете ее kill’ом). Наверное, в общем случае лучше всего проектировать цепь так, чтобы она была готова к любым комбинациям наличия или отсутствия тока на используемых вами пинах.

До сих пор были рассмотрены out-пины. Они как бы «пишут» на макетную плату, но не позволяют узнать ее текущее состояние. Например, нажата ли в настоящих момент какая-то кнопка. Даже если цепь разомкнута, out-пины об этом не знают. Поэтому есть еще и in-пины.

Экспортируем 5-ый пин и делаем его in-пином:

echo 5 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio5/direction

Этот пин я подключил к цепи из резистора сопротивлением 10 кОм и кнопки, которая в нажатом состоянии замыкает цепь, а в отпущенном размыкает.

«Прочитать» кнопку можно так:

cat /sys/class/gpio/gpio5/value

Считывается 1, если кнопка не нажата, то есть, цепь разомкнута, и 0, если кнопка нажата, то есть, цепь замкнута.

В итоге получилась такая конструкция (иллюстрация про кнопку взята отсюда):

А вот и скрипт на Python, который при нажатии на кнопку тушит текущий светодиод и зажигает следующий за ним:

#!/usr/bin/env python

import RPi.GPIO as GPIO

import time

# Use «logical» pin numbers
GPIO.setmode(GPIO.BCM)

# Disable «This channel is already in use» warnings
GPIO.setwarnings(False)

# Setup LED’s: 2 — green, 3 — yellow, 4 — redfor i in range(2,5):

   

GPIO.

setup(

i

,

GPIO.

OUT)

   

GPIO.

output(

i

, False)

current_led = 2

GPIO.

output(

current_led

, True)

# Prepare to read button state

BUTTON

= 5

PRESSED_CODE

= 0

GPIO.

setup(

BUTTON

,

GPIO.

IN,

pull_up_down

=

GPIO.

PUD_UP)

while True:

#    GPIO.wait_for_edge(

BUTTON

,

GPIO.

FALLING)#    print(«Button pressed»)#    GPIO.wait_for_edge(

BUTTON

,

GPIO.

RISING)#    print(«Button released»)
    time.sleep(0.05)

if

GPIO.

input(

BUTTON

) ==

PRESSED_CODE:

       

GPIO.

output(

current_led

, False)

        current_led

= max(2, (

current_led +

1)

%

5)

       

GPIO.

output(

current_led

, True)
time

.

sleep(0.1)

Опытным путем удалось подобрать временные задержки, при которых светодиоды переключаются в точности так, как ожидает пользователь. Закомментированный в приведенном коде метод wait_for_edge на практике работает совершенно непредсказуемо. Например, если зажать кнопку на несколько секунд, то последующие нажатия будут приводить к зажиганию светодиодов в каком-то почти случайном порядке.

Насколько мне известно, это по большому счету все, что можно сделать с помощью GPIO на Raspberry Pi. Поправьте, если я не прав.

Дополнение: В комментариях подсказывают, что малина также умеет и ШИМ. Еще один пример использования GPIO в одноплатном компьютере описывает заметка Реверс-инжиниринг роутера на примере GL.iNet GL-AR750.

Метки: Linux, Python, Электроника.

В этой статье мы поговорим о том, как подключать к Raspberry Pi датчики и другие внешние устройства через GPIO порты платы. Для работы будем использовать Python и библиотеки. Если вы новичок в работе с распбери, рекомендуем прочитать статью об установке Python и библиотек для Raspberry Pi.

Подключение внешних устройств к Raspberry Pi

Отличие Raspberry Pi от Arduino

Среди любителей радиотехники и электроники каждый слышал о существовании таких устройств как Arduino и Raspberry Pi. Обе платы используются для решения схожих  задач, оба прекрасно подходят для начинающих. Но по сравнению с Ардуино Raspberry – это многофункциональный компьютер, на котором может запускаться операционная система.

Из основных отличий можно выделить тактовую частоту – Raspberry работает в 40 раз быстрее Ардуино, и объем оперативной памяти – у Raspberry памяти больше примерно в 128000 раз. За счет простоты управления и использования разрабатывать аппаратные проекты на Ардуино  предпочтительнее. Ардуино может работать с любыми датчиками или чипами, а Raspberry Pi не такая гибкая, для работы с датчиками требуются дополнительные аппаратные устройства. Raspberry Pi очень требовательна к питанию, напряжение должно быть строго 5 В на входе, в то время как для ардуино рекомендуемое питание 7-12 В, которое стабилизируется до 5 В.

Важное отличие заключается в среде, в которой пишется программа. С Arduino IDE работать намного проще, чем с Linux. Установка библиотек для написания программы требуется для обеих систем, но код на Ардуино будет написан проще и короче.

Raspberry Pi возможно использовать в режиме многозадачности, как обычный компьютер. Одновременно может работать несколько программ в фоновом режиме.

Для расширения возможностей можно совместно использовать обе платы. Для управления датчиками и сенсорами использовать Ардуино, а сложные вычислительные задачи оставить для Raspberry Pi.

Описание GPIO

Количество портов в более старых и новых моделях Raspberry Pi отличается –model A и model B оснащены 26 выводами общего назначения GPIO, в следующих версиях количество выводов увеличено до 40.

Существует несколько видов обозначений выводов:

  • BCM – нумеруются выходы микропроцессора Broadcom. Используются при работе со специальными пакетами Rpi.GPIO. В большом количестве проектов используется именно эта нумерация.
  • WiringPi – нумеруются контакты для пакета Wiring Pi. Это библиотека, похожая на библиотеки для Ардуино, для работы с GPIO контактами.
  • Обычная цифровая нумерация выходов на самой плате.

Расположение контактов изображено на рисунке. На картинке для удобства последние 14 контактов отделены – это и есть новые выходы, которые были добавлены в новых версиях платы.

Описание контактов GPIO

Номер вывода BCM WiringPi Описание контакта
1 3v3 Питающий контакт на 3,3В
2 5v Питающий контакт на 5 В
3 BCM2 8 SDA
4 5v Питающий контакт на 5 В
5 BCM3 9 SCL
6 GND Земля
7 BCM4 7 GPCLK0
8 BCM14 15 TXD – отвечает за передачу данных
9 GND Земля
10 BCM15 16 RXD – отвечает за прием данных
11 BCM17 0 Вывод общего назначения
12 BCM18 1 PCM_C – используется в сочетании с ШИМ-методом.
13 BCM27 2 Контакт общего назначения
14 GND Земля
15 BCM22 3 Контакт общего назначения
16 BCM23 4 Контакт общего назначения
17 3V3 Питающее напряжение 3,3В
18 BCM24 5 Контакт общего назначения
19 BCM10 12 MOSI
20 GND Земля
21 BCM9 13 MISO
22 BCM25 6 Контакт общего назначения
23 BCM11 14 SCLK
24 BCM8 10 CS0
25 GND Земля
26 BCM7 11 CS1
27 BCM0 30 ID_SD
28 BCM1 31 ID_SD
29 BCM5 21 Контакт общего назначения
30 GND Земля
31 BCM6 22 Контакт общего назначения
32 BCM12 26 Контакт общего назначения
33 BCM13 23 Контакт общего назначения
34 GND Земля
35 BCM19 24 MISO
36 BCM16 27 Контакт общего назначения
37 BCM26 25 Контакт общего назначения
38 BCM20 28 MOSI
39 GND Земля
40 BCM21 29 SCLK

Выводы земля,  напряжение питания и другие аналогичные можно использовать любые, которые будут удобнее в конкретном проекте. Важно следить за тем, чтобы напряжение на GPIO было 3,3В, иначе контакт может быть вывеен из строя.

Среди выводов общего назначения имеются UART-контакты (на восьмом и десятом контактах). Они позволяют обеспечить взаимодействие Ардуино и Raspberry Pi. Также 4 вывода поддерживают I2C, главной задачей которых является коммуникация с периферией. Для верификации в коде нужно добавить строки

sudo apt-get install i2c-tools

sudo i2cdetect -y 1

Для осуществления доступа к I2C нужно подключить библиотеку smbus.

SPIподдерживают 11 выводов общего назначения. С помощью этого интерфейса можно настроить подключение нескольких устройств с помощью одной группы контактов.

Пример проекта: мигание светодиодов

Для работы понадобятся плата Raspberry Pi, светодиод, резистор на 200 Ом и соединительные провода. Анод светодиода (длинная ножка) нужно подключить через резистор к одному из цифровых выводов, например GPIO24, катод (короткая ножка) – к земле. Макет подключения представлен на рисунке. Резистор в данной схеме нужен для того, чтобы уберечь светодиод от перегорания. Выбрать правильный номинал можно пользуясь законом Ома R=U/I. Плата работает от напряжения 3,3В. Номинал, который будет получен по формуле – минимальный, можно выбирать сопротивление больше, но в этом случае яркость светодиода будет несколько ниже.

Теперь нужно написать программу. Код будет написан в установленной версии Python 2. Для этого нужно открыть среду Python 2 (IDLE) и нажать «новый файл».

В окно редактора нужно написать скетч, который заставит светодиод загореться на 10 секунд и отключит его. В первую очередь нужно выбрать нумерацию выходов. Как говорилось выше, существует несколько типов нумерации. В данном случае будет использоваться нумерация BCM.

Сам код выглядит следующим образом:

[py]

from RPi import GPIO

from time import sleep //первые 2 строки включают библиотеки для совместной работы с GPIO и sleep

GPIO.setmode(GPIO.BCM)  //этой строкой выбирается нумерация контактов

GPIO.setup(24,

GPIO.

OUT) //чтобы управлять светодиодом или другим устройством, нужно задать OUT. Для того чтобы считывать сигнал сенсора, нужно ввести IN.

GPIO.output(24, True) //подача истины на контакты

sleep(10) //светодиод загорается на 10 секунд, ожидание

GPIO.output(24, False)

GPIO.cleanup() //сброс всех настроек портов, чтобы они не мешали следующей программе.

[/py]

Нужно нажать запуск программы с помощью F5 или меню Run/Run Module.

Код можно немного изменить, чтобы светодиод включался и выключался с определенной частотой. Для этого нужно добавить оператор while вместо строк

GPIO.

output и Sleep.В цикле нужно задать частоту, с которой будет мигать светодиод. В данном случае он будет мигать раз в 1 секунду.

[py]

while True:

GPIO.output(24, True)

sleep(1)

GPIO.output(24, False)

sleep(1)

[/py]

Большим недостатком такой программы будет то, что она будет повторяться бесконечно и остановить штатным методом ее будет невозможно. Для этого нужно ввести дополнительно конструкцию, прерывающую работу при наборе на клавиатуре комбинации Ctrl+C.

[py]

try:

while True:

GPIO.output(24, True)

sleep(0.5)

GPIO.output(24, False)

sleep(0.5)

except KeyboardInterrupt:

print ‘program stop’

[/py]

Программу нужно сохранить, нажав ctrl+S. Затем нужно нажать F5, светодиод начнет мигать с периодичностью раз в секунду. Чтобы остановить выполнение программы, нужно нажать ctrl+C.

Выводы

В этой статье мы приступили к новой большой теме и сделали первые шаги в программировании на Python под Raspberry с использование

GPIO.

Возможности микроконтроллера существенно превышают привычный Arduino, поэтому для создания по-настоящему умных устройств придется осваиваться с новыми инструментами для работы с периферией. В дальнейших статьях мы продолжим наши эксперименты.

%PDF-1.5
%
1 0 obj
>
endobj
2 0 obj
>
endobj
3 0 obj
>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/Annots[ 33 0 R] /MediaBox[ 0 0 595.32 841.92] /Contents 4 0 R/Group>/Tabs/S>>
endobj
4 0 obj
>
stream
x][~03OK p\lqvd8#’ߪ»M{zۛa^>»%~ʪwn`;0Xa߿~{O_A!û?~%o{1Xuxׯ(~񫓱oN?_??;:ׯ_=+_*/}%һ3w i3^LOu1?c>O^;eZelڧiMkD12#v8-7.u?Wuz6gws{v=gBq